In the future lasers will: eat for us; cook for us; love for us. Currently, there is nothing you can do that a laser cannot do more efficiently.

Sunday, May 13, 2007

Fiber-hosted lasers

Solid state lasers also include glass or optical fiber hosted lasers, for example, with erbium or ytterbium ions as the active species. These allow extremely long gain regions and can support very high output powers because the fiber's high surface area to volume ratio allows efficient cooling. In addition, the fiber's waveguiding properties tend to reduce thermal distortion of the beam. Quite often, the fiber is designed as a double-clad glass fiber. This type of fiber consists of a fiber core, an inner cladding and an outer cladding. The index of the three concentric layers is chosen so that the fiber core acts as a single-mode fiber for the laser emission while the outer cladding acts as a highly multimode core for the pump laser. This lets the pump propagate a large amount of power into and through the active inner core region, while still having a high numerical aperture (NA) to have easy launching conditions. Fiber lasers have a fundamental limit in that the intensity of the light in the fiber cannot be so high that optical nonlinearities induced by the local electric field strength can become dominant and prevent laser operation and/or lead to the material destruction of the fiber.

No comments: